One of the most challenging aspects of building networked applications is dealing with network dynamics. Networks and endpoints go down, sometimes come back up, and this implies that consumers accessing these services have to respond as these changes occur.
This will be even more true for the Internet of Things (IoT), where a wide variety of devices and a wide variety of networks will be involved to support the use of a micro service. Through no design or programming fault, IoT services and the applications that depend upon them will be less reliable.
How should micro-service consumers respond to failure? That's a good question, as the answer clearly depends upon the application-level needs and requirements.
For example, once loaded an html web page does not need to know/respond to the failure of the web server or the dropping (or changing due to mobility) of the network connecting the browser to the web server. If the user clicks on a link to present another page the load of the page will fail, but for browsing web pages that's a completely acceptable strategy for handling network failure.
On the other hand, consider an IoT application where a real-time data stream is collected from a sensor device. In such a case it might make more sense to have strategy for responding to network and/or device failure such as switching to a backup, or perhaps presenting to a user or admin that the data stream is temporarily unavailable. The larger point is that consumers of a micro service will differ in their requirements for responding to network failures.
What does any of this have to do with micro services? Frequently it falls to the application to not only define a strategy for application-level failure handling, but also to implement the networking code to detect failure and to use this detection to allow an application to implement a failure-handling strategy. This networking code can be a very difficult thing to create, especially if it has to meet multiple service and application-level requirements.
There are now specifications allowing the excellent dynamics support in OSGi Services to be used for Remote Services. The OSGi Service Registry, was designed to support dynamic within-process services. This allows applications to respond to services that come and go dynamically without having to create all the software infrastructure to do so reliably. Further, there are now OSGi specifications for Remote Services, and these allow the same dynamics support to be used to respond to network dynamics.
Since the OSGi service registry is standardized, applications can also use (rather than build) convenient frameworks like Declarative Services/SCR or Spring/Blueprint to respond to network-induced service changes.
In short, the OSGi service registry and Remote Services provide standardized support for micro services dynamics without being bound by implementation to a specific protocol/transport, or even language.
No comments:
Post a Comment